terça-feira, 25 de outubro de 2016

Evidências da Evolução Bioquímica

      Até a década de 1950, as preocupações quanto à origem da vida eram consideradas assunto especulativo, incapaz de levar a conclusões mais decisivas. Era comum que posições religiosas e dogmáticas impedissem uma abordagem científica do tema. Hoje, não só muitas perguntas relativas à origem dos seres vivos foram respondidas como incontáveis experimentos de laboratório reproduziram condições supostamente vigentes na época. Obteve-se assim um conjunto de informações que permitiu formular teorias coerentes e plausíveis. 
    A Bioquímica trouxe luz á essa fascinante questão que persegue o homem desde tempos imemoriáveis. A teoria Bioquímica da Origem da Vida e dos seres mostra uma nova forma de perceber uma realidade que remete á nos mesmos e que vai além dos limites do pragmatismo diário.
      A Terra formou-se há cerca de quatro a cinco bilhões de anos. Há fósseis de criaturas microscópicas de um tipo de bactéria que prova que a vida surgiu há cerca de três bilhões de anos. Em algum momento, entre estas duas datas - a evidência molecular indica que foi há cerca de quatro bilhões de anos - deve ter ocorrido o incrível acontecimento da origem da vida. 
      Antes de surgir qualquer forma de vida sobre a Terra não havia o oxigênio atmosférico (que é produzido pelas plantas), mas sim vapor d'água. É provável que no princípio a atmosfera da Terra contivesse apenas vapor d'água (H2O), metano (CH4), gás carbônico (CO2), hidrogênio (H2) e outros gases.
   Os químicos reconstruíram em laboratórios, a nível experimental, estas condições primitivas, misturando os gases adequados e água num recipiente de vidro e adicionando energia, através de uma descarga elétrica. Desta forma, sintetizaram substâncias orgânicas de forma espontânea. É claro que o fato de as moléculas orgânicas aparecerem nesse caldo primitivo não seria suficiente. O passo mais importante foi o aparecimento de moléculas que se autoduplicavam, produzindo cópias de si mesmas.        Outro passo importante foi o aparecimento de estruturas anteriores às membranas, que proporcionaram espaços circunscritos onde aconteciam as reações químicas. Pode ter sido pouco depois deste estágio que criaturas simples, como as bactérias, deram lugar aos primeiros fósseis, há mais de três bilhões de anos. Numa experiência pioneira, no início dos anos 50, o cientista americano Stanley Miller recriou a provável atmosfera primitiva. Misturou num recipiente hermeticamente fechado hidrogênio (H2), vapor d'água (H2O), amônia (NH3) e metano (CH4). Fez passar através dessa mistura fortes descargas elétricas para simular os raios das tempestades ocorridas continuamente na época e obteve então aminoácidos - "tijolos" básicos das proteínas. Outras experiências testaram os efeitos do calor, dos raios ultravioletas e das radiações ionizantes sobre misturas semelhantes à de Miller - todas simulando a atmosfera primitiva. 

·     Nesse ambiente, surgiram espontaneamente os "tijolos" químicos que formam as grandes moléculas da vida. Esses "tijolos" são: os aminoácidos, que formam as proteínas; os ácidos graxos, que compõem as gorduras; e os açúcares, que constituem os carboidratos. Carboidratos e gorduras são compostos de carbono, hidrogênio e oxigênio. Das proteínas faz parte também o nitrogênio. 
·     O genial do experimento de Miller é que ele mostrou que moléculas complexas que formam a estrutura da matéria viva podiam ser geradas a partir de moléculas simples e sem a intervenção uma forma vivente pré-existente. 

·      Acredita-se que estas reações ocorreram na atmosfera primitiva da Terra. Com o passar dos anos, as moléculas sintetizadas desceram aos mares formando uma espécie de “sopa” primitiva. Neste novo ambiente (água, altas concentrações de diferentes sais, temperaturas elevadas) estas substâncias começaram á reagir e formar agregados maiores e mais complexos em estrutura. No início, grande número de lagoas e oceanos foi se convertendo numa "sopa" de "tijolos da vida". Como não existiam ainda os seres vivos para comê-los, nem oxigênio livre para decompô-los, sua concentração só aumentava. A energia necessária à combinação entre essas pequenas moléculas (que leva à síntese de grandes moléculas como proteínas, gorduras e carboidratos) era proveniente sobretudo do calor do Sol, mas também da eletricidade. · Estas unidades mais organizadas contrastavam com as menos organizadas que permaneciam dissolvidas nas águas dos mares. Primeiro, é preciso entender como surgiram às primeiras macromoléculas não dissolvidas no ambiente, mas agrupadas numa unidade constante e auto reprodutora. O cientista soviético Alexander Oparin foi o primeiro a dar uma resposta aceitável: com raríssimas exceções às moléculas da vida são insolúveis na água e, nela colocadas, ou se depositam ou formam uma suspensão coloidal, o que é um fenômeno de natureza elétrica. Há dois tipos de coloides: os que não têm afinidade elétrica com a água e os que têm afinidade. Devido a essa afinidade, os coloides hidrófilos permitem que se forme á volta de suas moléculas uma película de água difícil de romper. 
        Existe ainda um tipo especial de coloide orgânico. São os coacervados: possuem grande número de moléculas, rigidamente localizadas e isoladas do meio ambiente por uma película superficial de água. Desse modo, os coacervados adquirem sua "individualidade". 

        Tudo era favorável para que na "sopa" oceânica primitiva existisse muitos coacervados. Sobre eles atuou a seleção natural: somente as gotas capazes de englobar outras, ou de devorá-las, puderam sobreviver. Imagine um desses coacervados absorvendo substâncias do meio exterior ou aglutinando outras gotas. Ele aumenta e ao mesmo tempo em que engloba substâncias elimina outras. Esse modelo de coacervado, que cresce por aposição, não bastaria, porém, para que a vida surgisse. 
        Era preciso que entre os coacervados aparecesse algum capaz de se auto reproduzir, preservando todos os seus componentes. A esta etapa do processo evolutivo, a competição deve ter sido decisiva. As gotas que conseguiram auto reproduzir-se ganharam a partida. Elas tinham uma memória que lhes permitia manter sua
individualidade. Era o ácido desoxirribonucleico (DNA). As que não eram governadas pelo DNA reproduziram-se caoticamente. Desta forma, podemos dizer que os primeiros coacervados eram seres heterotróficos; à medida que as moléculas mais simples que serviam como alimento para os coacervados foram acabando, apenas aqueles coacervados diferenciados capazes de utilizar outras fontes de alimento poderiam sobreviver.
       Em outros termos, apenas os coacervados capazes de converter CO2 em nutriente, conseguiram continuar. A utilização de CO2 levou á introdução na atmosfera de um novo elemento: o oxigênio molecular. Foi o início do povoamento da terra pelos primeiros serves vivo como hoje se entendem: as algas.


Evolução Biológica


Entre os seres vivos e o meio em que vivem há um ajuste, uma harmonia fundamental para a sobrevivência. O flamingo rosa, por exemplo, abaixa a cabeça até o solo alagadiço em que vive para buscar ali seu alimento; os beija-flores, com seus longos bicos, estão adaptados à coleta do néctar contido nas flores tubulosas que visitam. A adaptação dos seres vivos ao meio é um fato incontestável. A origem da adaptação, porém, sempre foi discutida. 


Na Antiguidade, a ideia de que as espécies seriam fixas e imutáveis foi defendida pelos filósofos gregos. Os chamados, fixistas propunham que as espécies vivas já existiam desde a origem do planeta e a extinção de muitas delas deveu-se a eventos especiais como, por exemplo, catástrofes, que teriam exterminado grupos inteiros de seres vivos. O filósofo grego Aristóteles, grande estudioso da natureza, não admitia a ocorrência de transformação das espécies. Acreditava que os organismos eram distribuídos segundo uma escala que ia do mais simples ao mais complexo. Cada ser vivo nesta escala tinha seu lugar definido. Essa visão aristotélica, que perdurou por cerca de 2.000 anos, admitia que as espécies fossem fixas e imutáveis.




Lentamente, a partir do século XIX, uma série de pensadores passou a admitir a ideia da substituição gradual das espécies por outras, por meio de adaptações o ambiente em contínuo processo de mudança. Essa corrente de pensamento, transformista, explicava a adaptação como um processo dinâmico, ao contrário do que propunham os fixistas. Para o transformismo, a adaptação é conseguida por meio de mudanças: à medida que muda o meio, muda a espécie. Os adaptados ao ambiente em mudança sobrevivem. Essa ideia deu origem ao evolucionismo.
Evolução biológica é a adaptação das espécies a meios em contínua mudança. Nem sempre a adaptação implica aperfeiçoamento. Muitas vezes, leva a uma simplificação. É o caso, por exemplo, das tênias, vermes achatados parasitas: não tendo tubo digestório, estão perfeitamente adaptadas ao parasitismo no tubo digestório do homem e de outros vertebrados.



As evidências da evolução

O esclarecimento do mecanismo de atuação da evolução biológica somente foi concretamente conseguido a partir dos trabalhos de dois cientistas, o francês Jean Baptiste Lamarck (1744 – 1829) e o inglês Charles Darwin (1809 – 1882). A discussão evolucionista, no entanto, levanta grande polêmica. Por esse motivo é preciso descrever, inicialmente, as principais evidências da evolução utilizadas pelos evolucionistas em defesa de sua tese. Dentre as mais utilizadas destacam-se:
  • Os fósseis;
  • A semelhança embriológica e anatômica existente entre os componentes de alguns grupos animais (notadamente os vertebrados),
  • A existência de estruturas vestigiais e
  • As evidências bioquímicas relacionadas a determinadas moléculas comuns a muitos seres vivos.

  O que são fósseis?
Um fóssil (do latim fossilis, tirado da terra) é qualquer vestígio de um ser vivo que habitou o nosso planeta em tempos remoto, como uma parte do corpo, uma pegada e uma impressão corporal. O estudo dos fósseis permite deduzir o tamanho e a forma dos organismos que os deixaram, possibilitando a reconstrução de uma imagem, possivelmente parecida, dos animais quando eram vivos.


Processo de fossilização

Um fóssil se forma quando os restos mortais de um organismo ficam a salvo tanto da ação dos agentes decompositores como das intempéries naturais (vento, sol direto, chuvas, etc.). As condições mais favoráveis a fossilização ocorrem quando o corpo de um animal ou uma planta é sepultado no fundo de um lago e rapidamente coberto por sedimentos.



Dependendo da acidez e dos minerais presentes no sedimento, podem ocorrer diferentes processos de fossilização. A permineralização, por exemplo, é o preenchimento dos poros microscópicos do corpo de um ser por minerais. Já a substituição consiste na lenta troca das substâncias orgânicas do cadáver por minerais, transformando-o em pedra.

Gastrópode conservado por permineralização
Datação radioativa dos fósseis

      A idade de um fóssil pode ser estimada através da medição de determinados elementos radioativos presentes nele ou na rocha onde ele se encontra.
Se um fóssil ainda apresenta substâncias orgânicas em sua constituição, sua idade pode ser calculada com razoável precisão pelo método do carbono-14. O carbono-14 (14C) é um isótopo radioativo do carbono (12C).
      Os cientistas determinaram que a meia vida do carbono-14 é de 5.740 anos. Isso significa dizer que, nesse período, metade do carbono-14 de uma amostra se desintegra. Na hora da morte, um organismo que se fossiliza contém determinada quantidade de 14C, que os cientistas estimam ser a mesma que a encontrada nos seres de hoje. Passados 5.740 anos, restará no fóssil apenas metade da quantidade de 14C presente na hora da morte. Ao fim de mais 5.740 anos, terá se desintegrado a metade do que restou, e assim por diante, até que não haja praticamente mais esse isótopo radioativo na matéria orgânica remanescente.
       Assim, através de medidas da quantidade residual de carbono-14 em um fóssil, é possível calcular quanto tempo se passou desde a morte do ser vivo que o originou. Por exemplo, se um fóssil apresentar 1/8 do carbono radioativo estimado para um organismo vivo, isso significa que sua morte deve ter ocorrido entre aproximadamente 22 e 23 mil anos.
       Como a meia vida do carbono-14 é relativamente curta, a datação por esse isótopo só serve para fósseis com menos de 50 mil anos. Para datar fósseis mais antigos, os pesquisadores utilizam isótopos com meia-vida mais longa, que podem ser encontrados nas rochas fossilíferas. Por exemplo, rochas que se formaram há alguns milhões de anos podem ser datadas por meio do isótopo urânio-235 (235U), cuja meia-vida é de 700 milhões de anos. Para rochas ainda mais antigas, com centenas de milhões de anos de idade, pode-se usar o potássio-40, que tem meia vida de 1,3 bilhões de anos.

Anatomia comparada
A asa de uma ave, a nadadeira anterior de um golfinho e o braço de um homem, ainda que muito diferentes, possuem estrutura óssea e muscular bastante parecida. A semelhança pode ser explicada admitindo-se que esses seres tiveram ancestrais em comum, dos quais herdaram um plano básico de estrutura corporal.



     O parentesco evolutivo entre as aves e os mamíferos, por exemplo, também permite explicar as semelhanças entre os órgãos internos desses animais. O coração e o sistema circulatório e nervoso, entre outros, são constituídos pelas mesmas partes básicas.

Semelhanças embrionárias

     As semelhanças entre os embriões de determinados grupos de animais são ainda maiores do que as semelhanças encontradas nas formas adultas. Por exemplo, é difícil distinguir embriões jovens de peixes, sapos, tartarugas, pássaros e seres humanos, todos pertencentes ao grupo dos vertebrados. Essa semelhança pode ser explicada se levarmos em conta que durante o processo embrionário é esboçado o plano estrutural básico do corpo, que todos eles herdaram de um ancestral comum.


Órgãos ou estruturas homólogos
      Certos órgãos ou estruturas se desenvolvem de modo muito semelhante nos embriões de todos os vertebrados. São os órgãos homólogos. Apesar de terem a mesma origem embrionária, os órgãos homólogos podem ter funções diferentes, como é o caso do braço humano e da asa de uma ave, por exemplo.




 Órgãos ou estruturas análogos
     Se dois órgãos ou estruturas desempenham a mesma função, mas têm origem embrionária diferente, são chamados análogos. As asas de aves e de insetos, por exemplo, são estruturas análogas: ambas servem para voar, porém suas origens embrionárias são totalmente distintas.


Órgãos vestigiais

      A comparação entre moléculas de DNA de diferentes espécies tem revelado o grau de semelhança de seus genes, o que mostra o parentesco evolutivo. O mesmo ocorre para as proteínas que, em última análise, refletem as semelhanças e diferenças genéticas.
Semelhanças entre moléculas de DNA
Os recentes avanços da Biologia Molecular têm permitido comparar diretamente a estrutura genética de diferentes espécies, através da comparação das sequências de nucleotídeos presentes nas moléculas de DNA.
Referências:
      Órgãos vestigiais são estruturas atrofiadas, sem função evidente no organismo. O apêndice cecal do intestino humano, por exemplo, é um órgão vestigial. Esse órgão é uma pequena projeção do ceco (região do intestino grosso) e não desempenha nenhuma função importante no homem e nos animais carnívoros. Já nos herbívoros, o apêndice é muito desenvolvido e tem importante papel na digestão da celulose; nele vivem micro organismos que atuam na digestão dessa substância.


Tudo indica que os mamíferos atuais, carnívoros e herbívoros, tiveram ancestrais comuns, cuja dieta devia ser baseada em alimentos vegetais, ricos em celulose. Entretanto, no decorrer da evolução, cecos e apêndices deixaram de ser vantajosos para alguns grupos de organismos, nos quais se encontram reduzidos, como vestígios de sua origem. 


São exemplos, também, de estruturas vestigiais a vértebra coccígea, a membrana nictitante e os músculos das orelhas.
Evidências moleculares da evolução



O citocromo c é uma proteína presente em todos os seres vivos que fazem respiração aeróbica, sendo constituído por 104 aminoácidos em cadeias. A porcentagem de cada tipo de aminoácido presente nessa proteína varia nas diferentes espécies de organismos e está relacionada com a proximidade evolutiva entre as espécies. O citocromo c surgiu, como provavelmente, nos primórdios da vida na Terra, quando os primeiros seres vivos passaram a utilizar a respiração como processo para obtenção de energia.                 
Hoje essa proteína apresenta pequenas variações em cada grupo de organismos, nas quais devem ter se estabelecido ao longo do processo evolutivo.
A variação da estrutura primária de uma determinada proteína, em diferentes espécies, revela indiretamente suas diferenças genéticas uma vez que o código para a proteína está escrito nos genes.


Os resultados das análises bioquímicas têm confirmado as estimativas de parentesco entre espécies obtidas por meio do estudo de fósseis e anatomia comparada. Isso reforça ainda mais a teoria de que os seres vivos atuais resultam da evolução de seres vivos que viveram no passado, estando todos os seres vivos relacionados por graus de parentescos mais ou menos distantes.

O homem descende do macaco?

Na polêmica apresentação de seu trabalho a respeito do processo de seleção natural e da origem das espécies, Darwin foi acusado de defender a tese de que o homem descendeu dos macacos. Será que isso é verdade? A acusação é injustificada. Darwin nunca afirmou isso. O que ele procurava esclarecer era o fato de que todas as espécies viventes, inclusive a humana, teriam surgido por meio de um longo processo de evolução a partir de seres que o antecederam. Nesse sentido, homens e chipanzés, que tiveram um ancestral comum, seria “primos em primeiro grau”, fato que provocou a ira de muitos oponentes de Darwin. E não é que o assunto pode ser agora esclarecido, com uma fascinante descoberta na formação Chorora, na Etiópia central?
Um grupo de cientistas etíopes e japoneses encontrou restos fossilizados, na verdade oito dentes; de uma nova espécie de macaco – batizada com o nome Chororapithecus abyssinicus (ou macaco abissínico de Chorora) – que viveu a cerca de 10 milhões de anos e está sendo considerado o mais velho parente dos gorilas. 


Explicando melhor: até agora, os cientistas acreditavam que os gorilas, ao longo da evolução, tivessem se separado dos chimpanzés bem mais tarde. E, depois disso, teria havido a separação das linhagens que originaram os chimpanzés e os hominídeos (família a que pertence à espécie humana). Agora, com essa nova descoberta, tudo leva a crer que a origem do homem é mais antiga, cerca de nove milhões de anos. E, para completar, essa descoberta é um forte apoio da origem africana tanto dos humanos quanto dos grandes macacos modernos.




















Nenhum comentário:

Postar um comentário